Inspiration

Pair Programming

pair-programmingPair programming is a part of eXtreme Programming, an agile system development methodology. In Pair Programming two programmers sit together behind one computer. One is coding and the other reviews while communicating about the best solutions. The programmers frequently changes roles. Findings from different sources show that de results of the products contain less errors, are of a higher quality, and cost less man hours !

Research in the industry as well as in class indicates that starting programmers and students who practise pair programming are more confident and learn from each other tips on programming language, and design skills.  Girls show a higher interest in the subject when pair programming is used in class.

pairs-working-ipad2Children (and many adults) learn much more when they work together on one PC. This is not only because two people see and know more than one, but because working in pairs demands (verbal) communication, which is crucial for learning and understanding. Children do also benefit from working in pairs on one PC or iPad when working on programs and tasks that require problem solving skills.

Examples of activities on a computer that require problem solving skills:

Literature/research on Pair Programming:

A. Cockburn, L.Williams. (2001). The Costs and Benefits of Pair Programming,

Williams, L. et all. (2002). In Support of Pair Programming in the Introductory Computer Science Course. Computer Science Education, Vol. 12, Issue 3.

“Student pairs are more self-sufficient which reduces their reliance on the teaching staff. Qualitatively, paired students demonstrate higher order thinking skills than students who work alone.”

Liebenberg, J. , Mentz, E. & Breed, B. (2013). Pair programming and secondary school girls’ enjoyment of programming and the subject Information Technology. Computer Science Education. Vol. 22, Issue 3.

“Girls’ motivating for (programming and) computer science was much higher when they were allowed to work in pair. Girls’ confidence in the subject was higher in the pair programming classes.”

“A critical mass of girls is required to make girls enjoy and choose computer science and careers. Pair programming is an important means to reach that goal.” 

Pair Programming with kids, adolescents? Read the blogs and use one of the following programs:

Effective talk in the classroom

The Edutopia.org website offers great examples on pedagogy and didactics that build on concepts like growth mindset, ownership, effective learning, social and emotional learning, collaboration.

One topic is on Strategies for Effective Talk in the Classroom. This is not about the teacher talking, but about pupils/students talking and communicating. The approach supports learning in all subjects. It shows clearly how important it is that all pupils learn to communicate and express themselves clearly in different settings. The guidelines provided can be applied by any teacher.

Concept Cartoons-3

Every month DiScoro writes about (digital) resources that can be used in schools. In addition you will find issues that may inspire you. See Services for workshops, training etc.

Two more concept cartoons that can be used in class. Use pictures of characters with the speech balloons that fit your situation . See also earlier posts Concept Cartoons and Concept Cartoons-2. Many Brainpower problems can also be introduced with the Concept Cartoon format.

I discussed the first problem with grade 5 and grade 6 pupils. The were perfectly able to reason what would happen, even though they we never instructed on Archimedes’ Law. You can also use the concept cartoon in grade 8 or 9 after students have learned about Archimedes’ Law. Do not be disappointed if the students are confused.

Problem: We take a glass basin and place a plastic net with marbles and korks in it. We make sure that the net with the marbles and korks floats in the water. There is nothing that sticks out above the water and the net does not toach the bottom of the basin.

You can also bring the materials in class and let pupils fill the net so that it floats in the water. Discuss and finally cut the net. The answer requires reasoning about why this happens, but there are so many factors that these should come from the students and do not fit into the speech clouds.

What will happen to the water level if we cut the net open?

concepts-cartoons-waterniveau

The second concept cartoon is suitable for a younger age group (grade 2 or 3).

How can you go down faster on your sledge?
sledge

During the discussion words and concepts like speed, acceleration, friction (both with the surface as well as air friction), weight, size may be used.

Concept Cartoons-2

Every month DiScoro writes about (digital) resources that can be used in schools. In addition you will find issues that may inspire you. See Services for workshops, training etc.

The blogpost Concept Cartoons is so popular that we decided to write a second blogpost on the subject. The advantage of using Concept Cartoons in class is that it does not require material and a great deal of organisation that comes along with practical, hands-on experiments in class. However, hands-on practicals can be part of it, and remain a valuable and essential part of science education.

Two examples of concept cartoons. If you design your own concept cartoons it is recommended to leave one character with an empty speech balloon.

concept-snowman2

 

 

For more information see the official Concept Cartoons website.

concept-blood-circulation2

 

If you design your own concept cartoons it is recommended to leave one character with an empty speech balloon. Try out the following cartoon. We have started the first question already.
An effervescent tablet has been dropped in (warm) water.

Click on the picture to enlarge.

Design math tasks

In the previous blogpost on how to Change math task so that they become more challenging, we wrote about guidelines on how to change existing tasks. In this blogpost we discuss how to design new math tasks. Challenging maths tasks give students the opportunity to learn, think, explore, discuss, be creative and learn (about) different strategies and respresentations or visualisations in the process.

The guidelines below are particularly useful when you design new, challenging tasks.

  1. Can you make it into an activity?

  2. Can you make it hands-on: use materials, equipment and tools?

  3. Can you make it into an experiment?

  4. Can you use problems from the real world?

  5. Can you integrate it with other subjects?

H) Fold an air-plane from and A4 piece of paper and measure whose air-plane gets farthest. Pupils work in groups. (They decide how many tries they are allowed, how they can measure in a fair way, how they can improve their paper plane etc.)

I) Use polydron squares. See the blogpost Cube 3D-2D and Make a cube and fold it out into a nett. How many different netts can you find?

J) Let the students measure the schools playground using ‘steps’ (or a rope). What is the shortest way to cross the playground? Ask them to draw the playground and their shortest route on cm2 grid paper.

K) Plan a trip from your home town to Oslo. Work out and compare different options.
When is the trip fastest? Which means of transport is cheapest? Depending of how much time you want to spend on the project, you can decide how much information you give: timetables, maps, pricelists.

L) The task in the blogpost on Balancing Act is both physics and maths. It offers students the opportunity to investigation, experiment, and to find the rule. The last step is generalisation and (early) algebra. Instead of using a computerprogram you can also use a real balance/scales or have the students construct their own.

weegschaal met schaal

Change maths tasks

A headmaster of a primary school asked us if we had some good maths tasks for the lower grades.

fishingrodReminding the expression:
Give someone a fish, and they’ll eat for a day. Give them a fishing rod, and they’ll eat for life.’
we decided to give some tools in order to be able to:

(1) change existing tasks into better tasks, and
(2) design challenging math tasks.

But what are criteria for a challenging math task? We refer to Prof. Jo Boaler and use her criteria and add some of our own ideas based on experience with realistic mathematics education (Freudenthal Institute) and other resources.

We strongly advocate Inquiry-based learning. Note that we do not write ‘teaching’, we write ‘learning‘, because the goal is not teaching, but learning. More about inquiry-based learning can be found in earlier blogposts: Research on inquiry-based learning and Inquiry-based learning in practice. Inquiry-based learning uses more open tasks. Closed tasks with more scaffolding are less exciting and challenging. If students get step-by-step instructions (cooking-book practices), they stop thinking.

Challenging maths tasks give students the opportunity to learn, think, explore, discuss, be creative and learn (about) different strategies and respresentations or visualisations in the process.

Jo Boaler (‘Mathematical Mindsets’, 2015) offers the following rules to open up an existing task, thus making it more challenging:

  1. Can you open up the task to encourage multiple methods, pathways and representations?

  2. Can up make it into and inquiry task?

  3. Can you ask the problem before teaching?

  4. Can you add a visual component?

  5. Can you make it low floor and high ceiling?

  6. Can you add the requirement to convince and reason?

A) If you take a simple task from a textbook such as  5 + 7   Ask the students how they came to their answer (before even asking what the answer is). This way you encourage pupils to think about their strategy, to express their strategy in words or visually, to use mathematical vocabulary, to see and learn different strategies from each other.

B) Take the simple task  24 x 3  Students have already learned different strategies, such as swop the numbers  3 x 12 which is probably easier for some. Or they have used the strategy to double one number and half the other number 12 x 6. Now ask the students why 24 x 3 is equal to 3 x 24. Can they prove that this is true? They could for example use rectangles on a grid.

C) Take a task like  28 :  4   Do not teach the way to check the answer, but first ask: How could you check your answer  yourself?

D) Take the following task  1/4  x  5 . First offer visualisation and ask: How much is 1/4 of the 5 circles? Or instead of asking for an answer, ask: How could you divide the 5 circles in four?

vijf cirkels

E) Take the topic average. Do not teach the different averages, but let the pupils work on average without specifying what it is. They will have a basic notion of what average is. Let them for example measure their own height and register this for all students in class. Let them come up with the class average. Discuss which ‘average’ they think is best/fairest.

F) Take a task about measuring. This task deals already with understanding, namely of units of measurement. We can change the task so that it becomes ‘low floor, high ceiling’ (accessible and challenging for all).

multi 5b measurement

  • Estimate height or length and write this down using a unit of measurement.
  • Measure the objects (except for e).
  • If the students in your group came up with different results, discuss how this may have occured.
  • Try to write the height/length in a different unit of measument.

Another task on measurement. Instead og asking What is the circumference of a given rectangle? ask: Draw different rectangles with a circumference of 12 cm.

Multi 5b circumference

G) See the task Beads on a string from FI-rekenweb. See also the blogpost Early Algebra on Beads on a string.

kralen applet

 

 

MOOC -Success

Young woman juggler is juggling balls.A good start in 2016 !

Second run of the Open Online Course Success- Unleash yourself  starting in January 2016.

The course is about learning good habits that lead to success. Participants are introduced to four main focus areas mindsetgoals and tasks – individually and as part of a team. The course runs for 9 weeks and anyone with internet connection can participate. Everyone can benefit from the course, especially students and young professionals.

Course Date: January 11, 2016 up to March 14, 2016
Registration is OPEN.

 

MOOC stands for Massive Open Online Course and was first developed by Stanford University in 2008. The aim of MOOC is to offer online courses for an unlimited number of students wordlwide and is published via open access on the web.