physics

Springs simulation

DiScoro writes about inquiry-based learning, digital resources, and ways to encourage higher-order thinking. We focus on STEM education and the use of technology.

PHET has an interesting new simulation for primary school Masses and Springs. An easy to use simulation where pupils can investigate weights (mass) using springs. The program has three levels: Stretch, Bounce and Lab.

Stretch
The first challenge is to find out what ‘Spring strength’ actually means. The next task is to use it to find out the mass of the unknown weights. Pay attention to the availability of a ruler.
Instruct pupils check out all the options/buttons that are available on the screen. Many oversee some of them that come in handy in the next level.

Bounce
Some additional tools have been added. Lines for ‘resting position’ and ‘movable line’ and a stopwatch (chronometer). Estimate the mass of the three unknown weights again. How can you find this out using the chronometer? How does mass influence the bouncing of a spring? How does the spring strenghts influence the bouncing of the spring?

Lab
The last level is more suitable for secondary school students. Terms like ‘velocity’, ‘acceleration’ and ‘period trace’ are quite complex.  To explain how different values are related and to describe cause and effect using these concepts is quite a challenge.

More PHET simulations. See also Chemistry: pH scales and acidity Balancing Act, The moving man, Energy skate park, and Density and Buoyancy.

 Purchase  Free
 Hardware  PC; iPad
 Requirements  browser (HTML5 is used)

Technology and Design – Rocking horse

DiScoro writes about inquiry-based learning, digital resources, and ways to encourage higher-order thinking. We focus on STEM education and the use of technology.

We give an example of  a Technology & Design task. In several countries Technology & Design is a (project based) school subject for students (grade 6 to 10). This task comprises many subjects: arts, mathematics (measuring, scale and ratio, geometry) physics (friction, mass, centre of gravity, forces, movement), language (vocabulary, writing skills), technology. In addition, it is an example of co-creation and collaboration.

Task: design and make a rocking horse for young children
and test out it at a kindergarten.

The task is complex and challenging, yet at the same time has a very clear goal. We discern different steps.

(1) Research and design of rocking horses. Students may search the internet for ideas, examples, pictures. The students may check out different constructions, materials used. Students can search for technical drawings or draw the design from scratch. Others may want to build a miniature modell. At the end of this step the students have made their choice about what material they will use and about the type of construction.

Examples of rocking horses from the internet

(2) Planning. What are the steps to take in de construction phase? What do I need for the construction in terms of material, tools, and other resources. How much time do I need? What are the costs?

(3) Implementation. This will be carried out in the planned steps. A prototype made of cardboard or plywood (3mm or 5 mm) can be useful. If not a design on paper 2D/3D is required.

(4) Test at kindergarten. Students should decide in advance WHAT they will test out. (e.g. Is the construction strong enough? Is the the rocking horse attractive for the children? What age group does it suit best? Is it safe in use? Does it swing enough?) and HOW they will test this out.
The students will have to plan a visit to a kindergarten and explain what they wish to do. The results must be reported.

(5) Reporting and documentation. This should be done during the whole process and not just only at the end. Students may choose if they wish to use mainly written or oral, visual, or multi-media  documentation for reporting. The teacher could (or  should) specify what he/she expects and how it should be presented/delivered.

Of course the rocking horses could be examined, measured, compared in many ways and from different perspectives (physics, accounting/economics, maths).

Lux Meter App

DiScoro writes about inquiry-based learning, digital resources, and ways to encourage higher-order thinking. We focus on STEM education and the use of technology.

A phone with a camera has an built-in light sensor. This makes it possible to use your camera as a Lux meter. Lux meters on smartphones are an easy, accessible and cheap way to measure illumination.

Galactica is a lux meter that can measure light in to modes: direct and reflected. You can save measurements as photos and add a note.

Is a Lux meter on your smartphone reliable? Read the following blog Luxmeter App vs measuring device on research carried out with different smartphones and with different software. The conclusion is that for accurate and consistent measurements you need professional equipment and software.

However, to get an idea about light intensity the lux meters function well. The reflection mode offers the opportunity to see how the colour of a surface reflects or absorbs light. An interesting experiment is with a static lamp shining on a tabletop. Put paper sheets of different colours on the table and measure the light that is reflected by each colour. The results are quite remarkable.

Hardware and software with sensors for light, noise and temperature designed specifically for educational purposes is  €Sense. This package offers activities/lessons in which the sensors are used. Read more about €Sense (Euro Sense).

There are many lux meters available for iOS as well as for Android.

 Purchase  Free
 Hardware  iPhone, iPad
 Requirements  iOS 6  or higher

Noise Exposure

DiScoro writes about inquiry-based learning, digital resources, and ways to encourage higher-order thinking. We focus on STEM education and the use of technology.

We wrote about a Decibel meter App which measures noise level in decibel before. Noise Exposure is another App that measures the noise level in decibel. Noise Exposure has a simpler user interface than Decibel meter thus can easily be used with primary school pupils. An advantage is that you can save and share measurements. This makes it easier to register and compare measurements.

 Purchase  Free
 Hardware  iPhone, iPad
 Requirements  iOS 8 or higher

Video Science

DiScoro writes about inquiry-based learning, digital resources, and ways to encourage higher-order thinking. We focus on STEM education and the use of technology.

Video Science produced by by Science House offers a large number of short videos on experiments. The videos focus mainly on chemistry, but some videos are about phenomena from physics or other science areas.
Students can watch the video’s or carry out the experiments themselves., although some experiments require substances or equipment that will not be readily available. For you as a teacher the videos may inspire you to let show students the experiments. Of course it is even more more interesting and instructive if the students carry out experiments themselves in class.

The future for industry and society lies in recycling, and even a step further ahead in cyclic production, and cradle-to-cradle production. Particularly interesting are therefore experiments such as “Green plastic” and “Recycling paper”.

The latest App (version 4.0) is designed for iOS 6. Unfortunately the App does not work on iOS 11. Hopefully this will be resolved soon.

 Purchase  Free
 Hardware  iPhone, iPad
 Requirements  iOS 6  (not working on iOS11 !)

Decibel meter App

decibel-icon-appHow loud is the noise? Whether sound or noise is considered (too) loud or not is often subjective. The App Decibel enables one to measure the noise level and make it objective. It is a sensor that shows the results in three different ways: digital, analogue and in a graphical. There are many Decibel Apps but some show the results of the measurement only anlogue, and some analogue + digital but not graphical. When using this App in class students should be aware of how they measure, what to pay attention to so that results can be compared. Factors influencing the measurement could be: the distance to the source, the direction of the sensor/phone, pitch of the sound, background noise etc.

Combining the use of the App with the screenprint function of the device makes it possible to record, store and present the measurements at a later stage.

decibel2
Students could plot their own measured sounds on a scale: unplugged musical instruments, birds, voices, traffic etc. There are plenty charts on the internet that show which levels are dangerous and damaging.sound-levels

 Purchase  Free
 Hardware  iPhone, iPad
 Requirements  iOS 8+  (similar Apps are available for Android and on Google Play)

FlaskFiller simulation

glazenFlaskFiller, or rather GlassFiller, is a simulation which enables teachers and students to experiment with and reason about the relationship between the shape of a glass, and the change in speed while filling it up (time vs height of the liquid in the glass).

 

The simulation program enables the user to

  • Select the horizontal axis’ quantity, which is one of height, time, volume, or rising speed.
  • Select the vertical axis’ quantity, which is one of height, time, volume, or rising speed.

Note that you can select the same quantity for both axes, which can make for an interesting topic of discussion. See some screenshots below.

This slideshow requires JavaScript.

Read the information about the simulation and how to use it on FaskFiller Education.
Read the Research done on FlaskFiller software used with grade 5 pupils.

The simulation has been used with grade 5 pupils in a one-to-one setting. When using this simulation in class you might want to use a hands-on experiment first, whereby you use a measuring cup to fill up glasses with different shapes. Let the pupils measure, observe and reason about what is happening with the different glasses.

Afterwards let the pupils experiment with the simulation based on clear questions/tasks. Students should be encouraged to record their findings and discoveries on a worksheet.
Most grade 5 pupils understand the principle of instantaneous speed, but lack the vocabulary. After experimenting in small groups, you could start the simulation on your SmartBoard and discuss the findings. Here the pupils will learn to extend their vocabulary and express what they see and think. Vocabulary: (rising)speed, volume, height, shape, cola-flesjetime, timelap, decrease/increase in speed of height of liquid visible in the graph.
After experimenting and discussion, pupils should for example be able to match a glass (or bottle) with a graph and vice versa.

The simulation can be used from grade 5 up to grade 10 depending on the tasks given.

The simulation program is available online as an HTML file, but can also be downloaded for off-line use.

 Purchase  Free
 Hardware  PC
 Requirements  browser